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Introduction

Challenges in statistics as variables increase
High-dimensional Data

Number of variables p is much higher than the number of samplesn

Overly complex models
High performance, low interpretability

Overfitting
Model performs well in the training phase and the prediction
accuracy is however weak
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Introduction

Solutions to these problems
Model Selection

AIC/BIC based model selection methods

Sparse Regression
Lasso and Ridge based regression methods

Variable Importance Measures
Usually used in ensemble algorithm, i.e., Random Forest, Gradient
Boosting
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Methodology

Functional Gradient Descent Boosting Algorithm
Statistical Boosting
m Gradient boosting algorithm
can be viewed as a statistical
model of the generalized
additive model class.

f(x) = Bo+f1(x1)+fa(X2)+ - ~+Fp(Xp)
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Methodology

Functional Gradient Descent Boosting Algorithm
Statistical Boosting

Gradient boosting algorithm
can be viewed as a statistical

model of the generalized

additive model class.
Component-wise gradient boosting

Only the best performed base-

learner is chosen into the model

in every iteration. f(x) = Bo+f1(x1)+Fa(x2)+- - -+ (Xp)
Regressed iteratively

The model complexity is controlled by the number of iteration.
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Methodology

Component-Wise Gradient Boosting Algorithm
1. Set the initial iteration m=0. Given the initialized value of fl(- . .),
common choices are

710l *argmmpr (Yi,c)
i=1

or fl0l = 0.
2.Form = 1to mgtep
(a). Obtain the negative gradient vector at the previous iterationm — 1

- ap(yi, f(xi))
gml :g,[ V= ([
(X)L tey=fn 1 x0) (i=1

(b). Fit the negative gradient vector gl™ to the input variables x by the
base-learner procedure.

(Xl,g[m]), (X27g[m])v s ( 7g

o)

m]) procedure Am( i)i:1 o
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Methodology

Component-Wise Gradient Boosting Algorithm
(c). Select the component j* that best fits the negative gradient vector

Em

n
j* =argminy (g™ — A" (x)))’
1<$<p 124

(d). The model fi™(.) is updated by
fml() = Fm=1() + 0 ()

where 6 denotes a step length.
3. After mgo,, iterations, the model is obtained by

F) = #m()
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Methodology

Variable Selection Criterion
Selection Frequency

Currently implemented in the algorithm
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Methodology

Variable Selection Criterion

Empirical Risk Reduction
The empirical risk reduction from each base learner in every
iteration is calculated

Vlruz]sk(ﬁj()) = Z(p(y, fimhy — p(y, fim=11))

m:js,

[5-norm Contribution
The ls-norm of every base-learner is used as a measure of the
variable importance

1A ()| = JZ(E el ()2

1A )l
o Bl

=1

Viborm (i () =
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Simulation Data

Linear Model
m Simple Linear Model as base

Table 3: Sample size n and number of iterations my,p

Sample size n number of iterations my,p

learners — —
Non-linear Model Matop = Mgy ™
. Mstop = 500
m B-spline as base learners n =200 Matap = 40
Matop = mge;;*pwk]
Mstop = 500
n = 1000 Mstop = 40
Matop = mLc;;;ukl
Mitop = 500
n = 2000 Mtop = 40
Matop = mge;:pwk]
Mstop = 500
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Simulation Data

High-Dimensional Data

Table 5: Simulation design for high-dimensional scenario

Sample size n number of influential variables & number of non-influential variables j number of variables
n=50 k=2 j =100 p =102
n =100 k=3 7 =500 p =503
n =500 k=8 j = 1000 p= 1008
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Main Result

Linear Model

variable coefficients as number of iterations increases

Selection frequency changes as number of iterations increases
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Main Result

High-dimensional Data

Boxplot result for false positive variables
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Figure 31: Number of false positive variables in high-dimensional scenario
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Conclusion

Overfitting

The variable importance measures based on empirical risk
reduction and norm contribution in the FGDB algorithm are stable
in resisting overfitting problem.
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Conclusion

Overfitting

The variable importance measures based on empirical risk
reduction and norm contribution in the FGDB algorithm are stable
in resisting overfitting problem.

High-Dimensional Data

In high-dimensional data scenario, VIl risk and VI norm also have a
good ability to distinguish and rank variables by their importance.

Multicollinearity
They are also stable when existing multicollinear variables.



technische universitat SFB 876 Providing Information
dortmund by Resource-Constrained Data Analysis

Outlook

More Complex Data

In future research, more complex data scenarios need to be
considered.

More Real-World Applications

More real-world data needs to be validated, especially in the field
of biometrics and bioinformatics when the dimensionality of the
data is very high.



technische universitat SFB 876 Providing Information
dortmund by Resource-Constrained Data Analysis

Outlook

More Complex Data

In future research, more complex data scenarios need to be
considered.

More Real-World Applications

More real-world data needs to be validated, especially in the field
of biometrics and bioinformatics when the dimensionality of the
data is very high.

Thanks for your attention!
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Appendix

Boston House Price Data

Table 6: Boston Housing Dataset: variable explanation
Variable abbreviation Variable explanation

crim per capita crime rate by town
zn proportion of residential land zoned for lots over 25,000 sq.ft
indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
nox nitrogen oxides concentration (parts per 10 million)
rm average number of rooms per dwelling
age proportion of owner-occupied units built prior to 1940
dis weighted mean of distances to five Boston employment centres
rad index of accessibility to radial highways
tax full-value property-tax rate per $10,000
ptratio pupil-teacher ratio by town
black 1000(Bk — 0.63)* where Bk is the proportion of blacks by town
1stat lower status of the population (percent)
medv median value of owner-occupied homes in $1000s
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Appendix

Boston House Price Data

Variable Ranking (Risk Reduction) Variable Ranking (Norm Contribution)
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(c) Variable importance by Selection frequency

Figure 36: Relative importance result of FGDB algorithm
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Appendix

Boston House Price Data

Table 7: Boston Housing Dataset: Measures of Variable Importance

Variable bagging randomForest gbm  VIik VI SeleFreq
IncMSE  IncNodePurity IncMSE IncNodePurity

crim 0.156 0.038 0.128 0.052 0.034 0.004 0.021 0.050
zn 0.038 0.001 0.031 0.005 0.000 0.000  0.003 0.010
indus 0.118 0.006 0.091 0.051 0.000 0.000  0.000 0.000
chas 0.002 0.001 0.020 0.003 0.008 0.012 0.048 0.090
nox 0.236 0.027 0.176 0.092 0.042 0.008 0.056 0.160
m 0.641 0.443 0.320 0.282 0.389 0.323 0.261 0.130
age 0.175 0.012 0.094 0.022 0.002  0.000  0.000 0.000
dis 0.307 0.065 0.158 0.064 0.047 0.014 0.084 0.220
rad 0.501 0.003 0.046 0.006 0.003  0.000  0.000 0.000
tax 0.155 0.014 0.089 0.018 0.010  0.000  0.000 0.000
ptratio  0.187 0.015 0.133 0.033 0.028 0.099 0.152 0.140
black 0.100 0.011 0.047 0.013 0.004 0.017  0.054 0.08
1stat 0.374 0.364 0.320 0.358 0.433 0522 0321 0.12




