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Introduction

Challenges in statistics as variables increase
High-dimensional Data

Number of variables p is much higher than the number of samples n

Overly complex models
High performance, low interpretability

Overfitting
Model performs well in the training phase and the prediction
accuracy is however weak
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Introduction

Solutions to these problems
Model Selection

AIC/BIC based model selection methods

Sparse Regression
Lasso and Ridge based regression methods

Variable Importance Measures
Usually used in ensemble algorithm, i.e., Random Forest, Gradient
Boosting
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Methodology

Functional Gradient Descent Boosting Algorithm

f(x) = β0+f1(x1)+f2(x2)+· · ·+fp(xp)

Statistical Boosting
Gradient boosting algorithm
can be viewed as a statistical
model of the generalized
additive model class.

Component-wise gradient boosting
Only the best performed base-
learner is chosen into the model
in every iteration.

Regressed iteratively
The model complexity is controlled by the number of iteration.
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Methodology

Component-Wise Gradient Boosting Algorithm
1. Set the initial iteration m=0. Given the initialized value of f̂[0](· · · ),
common choices are

f̂[0] ≡ arg min
c

1

n

n∑
i=1

ρ(Yi, c)

or f̂[0] ≡ 0.
2. Form = 1 tomstop
(a). Obtain the negative gradient vector at the previous iterationm− 1

g[m] = g[m]
i =

([
∂ρ(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

)
(i=1,...,n)

(b). Fit the negative gradient vector g[m] to the input variables x by the
base-learner procedure.

(x1, g[m]), (x2, g[m]), . . . , (xp, g[m])
procedure−→ ĥmi (xi)i=1,...,p 4
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Methodology

Component-Wise Gradient Boosting Algorithm
(c). Select the component j∗ that best fits the negative gradient vector
gm

j∗ = arg min
1≤j≤p

n∑
i=1

(g[m]
i − ĥ[m]

j (xj))2

(d). The model f̂[m](·) is updated by

f̂[m](·) = f̂[m−1](·) + θ · ĥ[m]
j∗ (xj∗)

where θ denotes a step length.
3. Aftermstop iterations, the model is obtained by

f̂(·) = f̂[m](·)
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Methodology

Variable Selection Criterion
Selection Frequency

Currently implemented in the algorithm

l2-norm Contribution
The l2-norm of every base-learner is used as a measure of the
variable importance

‖ĥj(·)‖ =

√√√√ n∑
i=1

(ĥ[mstop]
j (xij))2

VI[j]norm(ĥj(·)) =
‖ĥj(·)‖∑p
j=1 ‖ĥj(·)‖
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Methodology

Variable Selection Criterion
Empirical Risk Reduction

The empirical risk reduction from each base learner in every
iteration is calculated

VI[j]risk(ĥj(·)) =
∑
m:j∗m

(ρ(y, f̂[m])− ρ(y, f̂[m−1]))

l2-norm Contribution
The l2-norm of every base-learner is used as a measure of the
variable importance

‖ĥj(·)‖ =

√√√√ n∑
i=1

(ĥ[mstop]
j (xij))2

VI[j]norm(ĥj(·)) =
‖ĥj(·)‖∑p
j=1 ‖ĥj(·)‖ 5
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Simulation Data

Linear Model
Simple Linear Model as base
learners

Non-linear Model
B-spline as base learners
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Simulation Data

High-Dimensional Data
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Main Result

Linear Model
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Main Result

High-dimensional Data
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Conclusion

Overfitting
The variable importance measures based on empirical risk
reduction and norm contribution in the FGDB algorithm are stable
in resisting overfitting problem.

High-Dimensional Data
In high-dimensional data scenario, VI risk and VI norm also have a
good ability to distinguish and rank variables by their importance.

Multicollinearity
They are also stable when existing multicollinear variables.
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Outlook

More Complex Data
In future research, more complex data scenarios need to be
considered.

More Real-World Applications
More real-world data needs to be validated, especially in the field
of biometrics and bioinformatics when the dimensionality of the
data is very high.

Thanks for your attention!

10



Data Science Center

Outlook

More Complex Data
In future research, more complex data scenarios need to be
considered.

More Real-World Applications
More real-world data needs to be validated, especially in the field
of biometrics and bioinformatics when the dimensionality of the
data is very high.

Thanks for your attention!

10



Data Science Center

Reference

Bühlmann, P., Gertheiss, J., Hieke, S., Kneib, T., Ma, S.,
Schumacher M., Ziegler, A. (2014). Discussion of the evolution of
boosting algorithms and extending statistical boosting. Methods of
information in medicine, 53(06), 436-445.
Bühlmann, Peter, and Torsten Hothorn. Boosting algorithms:
Regularization, prediction and model fitting Statistical science
22.4 (2007): 477-505.
B. Hofner, L. Boccuto, and M. Goeker. Controlling false discoveries
in high- dimensional situations: boosting with stability selection.
BMC Bioinformatics, 144(16), 2015.
Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias
Schmid, and Benjamin Hofner. mboost: Model-Based Boosting,
2020. R package version 2.9-2.
Mayr, Andreas, et al. The evolution of boosting algorithms-from
machine learning to statistical modelling. arXiv preprint
arXiv:1403.1452 (2014).

11



Data Science Center

Reference

Mayr, A., Hofner, B., Schmid, M. (2012). The importance of knowing
when to stop. Methods of Information in Medicine, 51(02), 178-186.
Hofner, B., Hothorn, T., Kneib, T., Schmid, M. (2011). A framework
for unbiased model selection based on boosting. Journal of
Computational and Graphical Statistics, 20(4), 956-971.
Bühlmann, P., Yu, B. (2003). Boosting with the l2 loss: regression
and classification. Journal of the American Statistical Association,
98(462), 324-339.

11



Data Science Center

Appendix

Boston House Price Data
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