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Semi-Structured Deep Distributional Regression (SDDR)

® Semi-Structured:

® Combine structured data & statistical regression components
® with unstructured components such as deep neural networks

¢ Distributional Regression:

® Modeling the whole distribution
® Similar to location, scale and shape (LSS) approaches
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SDDRII

® Main idea:
® Fit all commonly used statistical models in a neural network (1)
® but also allow to learn parts of the model “deep” (2a)
® Ensure a meaningful behaviour between the two parts (2b)
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Outline

@ Statistical Regression in Neural Networks

@ Neural Networks beyond Classical Regression
©® A Unified Framework

@ Extensions

® Software

® Some Results

@ Summary
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Statistical Regressionin
Neural Networks



Neurons in Neural Networks

® A neuron /4 in a neural network (NN) is a transformed linear
combination

¢ For one observation (n = 1):

Input: x e R
Weights: weR?
Input times weights: 7 :=xw = 3, x;w; € R
Output: h=o(n) eR

with activation function o (+)
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Some Neural Network

Input Hidden Hidden Output
layer 1 layer 2
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Some Neural Network

Input Hidden Hidden Output
layer 1 layer 2

10/41 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



Some Neural Network

Input Hidden Hidden Output
layer 1 layer 2 layer
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Some Neural Network

Input Hidden Hidden Output
layer 1 layer 2 layer
=0o(xw, )
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A Linear Model

with loss (§-y)?
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A Generalized Linear Model

Input Output

=o(Xxw,,) with loss -log £(7.y), y ~ ExpFam(0)
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Ridge Regression

Input Output

=o(Xxw,,) with loss -log £(9.y) + AY, w?
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Input Output

=o(Xxw,,) with loss -log £(9.y) + A3, |
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More Complex Penalties

Input Output

=o(Xxw,,) with loss -log £(§.y) + A\WP w
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A Generalized Additive Model (GAM)

with loss -log £L(y,y) + \WP w
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Advantages of GAMs in NN

No limitationto p < n

No limitation for large n

Any differentiable loss function (« distribution)

Auto differentiation
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Advantages of GAMs in NN

No limitationto p < n

No limitation for large n

Any differentiable loss function (« distribution)

Auto differentiation

But we can also learn whole distributions...
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Distribution Layers

Idea [2]: Instead of using an output layer that just creates y
® why not return a parametric distribution ¥ (8)

¢ with parameters 6 learned by the neural network?
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The Netwo om before

with loss -log £L(y,y) + \WP w
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Network with Distribution Layer

Basis Trafo Distribution layer

with loss -log £(8,y) + A\W'P w

with options to output any
distribution characteristic
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A GAMLSS

Basis Trafo Distribution layer

with loss -log £(8,y) + A\W'P w

with options to output any
distribution characteristic
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Distribution Layers Extended

® not restricted to standard distributions:
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Distribution Layers Extended

® not restricted to standard distributions:

® arbitrary mixtures of distributions

® bijectors allowing for diffeomorphisms
® (autoregressive) flows [6]
L]

e still auto differentiation
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Neural Networks beyond
Classical Regression



The benefit of NN + Stat.Regression

NNs are very flexible in their model specification.

We can add:
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The benefit of NN + Stat.Regression

NNs are very flexible in their model specification.

We can add:
® Higher-order Effects

® Additive models are easy to interpret and understand,
® but what if the data generating process is more complex
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The benefit of NN + Stat.Regression

NNs are very flexible in their model specification.

We can add:
® Higher-order Effects
® Additive models are easy to interpret and understand,
® but what if the data generating process is more complex
® Additional non-tabular data

® Extracting features from images, texts, ... is tedious
® Not an end-to-end approach
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Unstructured Data Sources |

Many use cases have additional non-tabular data

® Medicine: Patient info (tabular), but also with scans

e = - ol -
. Iﬁm‘w"'-ﬁ:l
Radiological Whole Liver Machine Learning
Feature Extraction
Images Segmentation Prognosis

Source: Ingrisch (2020)
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Unstructured Data Sources |l

® Psychology: Questionnaires, with open-ended questions

Closed question

Why don’t you eat ice cream at
Fictionals Ice Cream Parlour?
(Choose at least one answer.)

I don't like the flavours
It’s too expensive

The service is bad

I don’t like the ice cream
It’s too far from my house

I don’t know

Open-ended question

Why don’t you eat ice cream at
Fictionals Ice Cream Parlour?

| am lactose intolerant so |
can't eat most ice creams, and
it's really hard to find a store
that offers good lactose-free
ice cream. I've never heard of
Fictionals but if | knew that
they offered some, | would
definitely try them out
because | love ice cream!

Source: https://trinachi.github.io/
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https://trinachi.github.io/

Multimodal Learning

Learn from multiple data modalities + tabular data

There are 6,348 neglected kitties here.

There are 8,193 homeless doggies here.
Shall we give them a loving family?

Let's find a home for them now!

Noodle
Male, 4 Mths, Domestic Short Hair
Selangor, by catleyow

Lavender
Female, 2 Mths, Mixed Breed
Kuala Lumpur, by mobula

Lavender, a 10-week (estimated) old girl has a short but Noodle is a gentle, affectionate rascal, who loves
very eventful history. She was abandoned together with human company and is always ready to play. He
her two sisters by the roadside around 12 November. And has left the “teething’ age, so won't be a bitey or
a few days after a group of dog lovers in the scratchy kitten; he’d rather lie in your arms and be
neighborhood in. cuddled! His sociabl

Source: Petfinder.my
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A Unified Framework



@ All commonly used regression models within NN

® with the exact same model being optimized
® comparable results to classical statistical routines
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@ All commonly used regression models within NN

® with the exact same model being optimized
® comparable results to classical statistical routines

® Also allow for deep neural network (DNN)
® ensure that this does not conflict with first goal
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SDDR Framework

Free to add any other deep neural network to 6y

Ok = o(nk) = o (Br,0 +xBx + DNNy)
= Framework = Structured Effects + Unstructured Effects
= DNNj, allows to
¢ include unstructured data sources, like images, texts, etc.

® model higher-order (non-linear) interaction effects
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SDDR Framework

Free to add any other deep neural network to 6y

Or = ok (k) = o (Br,0 +xBx + DNNy)

= Framework = Structured Effects + Unstructured Effects
= DNNj, allows to

¢ include unstructured data sources, like images, texts, etc.

® model higher-order (non-linear) interaction effects

... but we have to enforce
¢ identifiability of structured effects

® meaningful decomposition
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Axiomatic Properties

©® SDDR without DNN / DNN with no influence
— should yield the structured additive model
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©® Structured effect and DNN effect of same covariates
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Axiomatic Properties

©® SDDR without DNN / DNN with no influence
— should yield the structured additive model

® SDDR with no influence of structured model part
— structured effects should be zero

©® Structured effect and DNN effect of same covariates
— ensure identifiability

= via Orthogonaliazation
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ogonalization

Separates space in its different components
® Linear space spanned by columns of structured covariates X
¢ Orthogonal complement X+

® DNN is projected into X+ — happens within the graph

= Ensures identifiability
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Orthogonalization - High Level View

NJomjaN |ednaN desQ

:
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Orthogonalization - High Level View
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Orthogonalization - High Level View
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Orthogonalization - High Level View
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Extensions



Extensions

e Within SDDR
® Multivariate outcome models
¢ Inference for weights — turn SDDR into a Bayesian NN
® Other proposed derivates
® Neural Mixture Density Regression (w/ Pfisterer & Bischl)
¢ Deep Conditional Transformation Models (w/ Baumann &
Hothorn)
® Deep Piecewise Exponential Models (w/ Kopper, Bender et al.)
® Upcoming
® SDDR for functional data
® SDDR for time series data
¢ Further Orthogonalization use cases
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Software



Implementation

Implemented in R package deepregression

® Basis Transformations using s-/ti-/te-terms from mgcv
DNN definition in keras

Graph building and model training in Python / TensorFlow
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Example and Details |

Example:
Y= ﬁ() +f1 (x) + DNN1 (x) + &

with
e~N(,0)

and we model

o =exp Zl(fac =k)Br +f2(z) + DNNa(a, b, c,d) | .
k

27/41 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



28/41

Example and Details I

Exemplary DNN specifications:

deep_modl <- function(x) x %>%
layer_dense(units =

1, activation = "linear")

deep_mod2 <- function(x) x %>%

layer_dense(units = 32, use_bias = FALSE) %>%
layer_dropout(rate = 0.2) %>%

layer_dense(units 8, activation =
layer_dense(units = 1, activation

"relu") %>%
= "linear")
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Example and Details IlI

Example ctd.:

mod <- deepregression(
y =Y,
data = data,
list_of_formulae = list(

location = 1 + s(x, bs = ’ps’) + deep_modl(x),
scale =0 + fac + s(z) + deep_mod2(a,b,c,d)),
list_of_deep_models = list(deep_modl, deep_mod2),
family = "normal",
df = 10

)

history <- mod %>% fit(epochs=100)
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Example and Details IV

Many convenience functions available for the fitted mod:
e coef for structured model coefficients
® plot for plotting smooth terms

e cv for tuning the model

get_distribution to access fitted distribution

predict for prediction on new data
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e Still in a private Github repo

® [f you want to use the Beta version, let me know

® Hopefully open-sourced end of year

31/41 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



Some Results



Simulation Results - Decomposition |

Decomposition

¢ Simulation to demonstrate identifiability of structured effects in
DNN presence
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Simulation Results - Decomposition |

Decomposition

¢ Simulation to demonstrate identifiability of structured effects in
DNN presence

® Data generating process:

10 10
E(Y)x) = Bo+x3 + Zlﬁ-(xj) + 1—[1xj
J= =

32/41 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



Simulation Results - Decomposition |

Decomposition

¢ Simulation to demonstrate identifiability of structured effects in
DNN presence

® Data generating process:

10 10
E(Y)x) = Bo+x3 + Zlﬁ-(xj) + 1—[1xj
J= =

® Model:
location = +1 + x1 + ...+ x10 +
s(xl) + ...+ s(x10) +
deep(x1l, ..., x10)
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Simulation Results - Decomposition | e,
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Simulation Results - Comparisons |

Model Comparison LSS Approaches

¢ Simulation to demonstrate estimation performance and
goodness-of-fit

® Compared to bamlss, gamlss, mboostLSS
® Additive model with Normal, Gamma and Logistic distribution
* n e {300,2500}, p € {10,75}
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Simulation Results - Comparisons ||

RMSE of coefficients (w/o outliers from bamlss and gamlss)
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Application - Deep Transformation Model |

Deep Conditional Transformation Models

® Movies Review Dataset
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Deep Conditional Transformation Models
® Movies Review Dataset
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P(Y < ylx) = Fz(h(ylx))

with error distribution Fz
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Application - Deep Transformation Model |

Deep Conditional Transformation Models
® Movies Review Dataset

® Model the conditional CDF of movie revenue Y
non-parametrically

¢ Using transformation models:
P(Y < ylx) = Fz(h(y|x))
with error distribution Fz and transformation function

h(ylx) =a(y)" 9(x) +  Bx)
—— ——
Interaction Term Shift Term
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Application - Deep Transformation Model ll

e For tabular data, we define the predictor

20
Z,Br,,l(genre,- =r) + s1,(popularity;)+

r=1

52.(releasedate;) + s3 ;(budget;) + s4 ;(runtime;)

for both Shift and Interaction

37/41 David Riigamer (LMU) Semi-Structured Deep Distributional Regression
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® We also use the movie description in a DNN:
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Application - Deep Transformation Model Il

e For tabular data, we define the predictor

20
Z,Br,,l(genre,- =r) + s1,(popularity;)+
r=1

52.(releasedate;) + s3 ;(budget;) + s4 ;(runtime;)

for both Shift and Interaction
® We also use the movie description in a DNN:

Structured: no DNN
Deep Shift: embedding + FC layer in Shift term
Deep Interaction: embedding + FC layer in Interaction term

Deep Combination: embedding + FC layer fed in both terms
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Application - Deep Transformation Model Ill
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Application - Mixture Models IV

t-SNE of learned embedding space for 50 most freq. words
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famil
world y
T T T
-10 0 10
Dimension 1
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Application - Deep Transformation Model V

® Comparison with Transformation Boosting Machines (TBM, [3])

¢ Based on averaged predicted log-scores (PLS) on test data

Model mean PLS (SD)
Structured -4.84 (3.10)
Deep Shift -52.58 (21.06)

Deep Interaction
Deep Combination
TBM-Shift
TBM-Distribution

20.68 (11.80)
24.64 (13.00)
23.31 (0.83)
2238 (0.31)
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Summary



Summary

e Statistical Regression can be embedded into NN
¢ feasibility in high-dimensional settings
® straightforward extensions of existing model classes
e SDDR
unified network architecture
to fit (distributional) regression models
options to add arbitrary DNN
ensures identifiability
® deepregression

¢ implementation of SDDR in R
® various models using familiar R interface
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Appendix



Application - Mixture Models |

Movie Review Dataset
® Movie Reviews from 0 to 10
e Tabular information like revenue, release date, ...

® genres — one movie can have multiple genres
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Application - Mixture Models Il

Ratings for different genres

0.6

0.4

Value

0.2

0.0

25 5.0 75 10.0
vote average
D Action D Adventure D Animation D Comedy D Crime D Documentary
genres |:| Drama |:| Family |:| Fantasy |:| History D Horror |:| Music
|:| Mystery |:| Romance |:| Science Fiction |:| Thriller D War |:| Western
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Application - Mixture Models I

® We define a mixture model of 18 beta distributions

44141 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



Application - Mixture Models I

® We define a mixture model of 18 beta distributions

e distribution parameters ¢, ¢; of all 18 mixtures are modeled via

S1.m.k(budget;) + s2.m.x(popularity;)+
§3.m.k (runtime;) + s4 m r(releasedate;)

for mixture m and parameter k € {0, 1}
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Application - Mixture Models Il

® We define a mixture model of 18 beta distributions

e distribution parameters ¢, ¢; of all 18 mixtures are modeled via

S1.m.k(budget;) + s2.m.x(popularity;)+
§3.m.k (runtime;) + s4 m r(releasedate;)

for mixture m and parameter k € {0, 1}

® Movie description — embedding layer + FC layer
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Application - Mixture Models IV

Models:
(D) : Only structured predictor
(II) DNN with 18 output units fed into cg’s
(III) DNN with 18 output units fed into c¢;’s
(IV) DNN with 36 output units fed into c¢’s and ¢;’s
(V) DNN with 1 output unit fed into linear predictor of ™

(VI) Combination of (IV) and (V)
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Application - Mixture Models V

Mean RMSE values (standard deviation in brackets) on test data

Model Mean RMSE
@D 0.242 (0.128)
In 0.176 (0.122)
r  0.213(0.117)

Iv) 0.321(0.156)
V) 0.117 (0.026)
(V)  0.190 (0.090)
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Application - Mixture Models VI

Estimated mixture components for each model
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Application - Mixture Models V

t-SNE of model (V) embedding space for 50 most freq. words
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Extension: Epistemic uncertainty

SDDR can also be turned into a Bayesian NN (BNN)
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Extension: Epistemic uncertainty

SDDR can also be turned into a Bayesian NN (BNN)
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® Variational inference: Define approximate posterior

® variational posterior g(w|1)
® variational parameters 1

4941 David Riigamer (LMU) Semi-Structured Deep Distributional Regression



Extension: Epistemic uncertainty

SDDR can also be turned into a Bayesian NN (BNN)
® A BNN defines (prior) distributions over weights w
® The corresponding posterior p(w|x) is usually intractable
® Variational inference: Define approximate posterior

® variational posterior g(w|1)
® variational parameters 1

¢ network is trained by minimizing the ELBO criterion

KLg[g(w[9) [| p(wlx)] — Eq[log L(w)]
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Extension: Epistemic uncertainty

SDDR can also be turned into a Bayesian NN (BNN)
® A BNN defines (prior) distributions over weights w
® The corresponding posterior p(w|x) is usually intractable
® Variational inference: Define approximate posterior

® variational posterior g(w|1)
® variational parameters 1

¢ network is trained by minimizing the ELBO criterion
KL, [g(w[?) || p(wlx)] — E4[log L(w)]

using the Bayes by Backprop [1] algorithm
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Bayesian / Variational Layers (ctd.)

Input Hidden Hidden Output
layer 1 layer 2 layer
=o(Xxw,,) loss = -log £(Y.y)
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Bayesian / Variational Layers (ctd.)

Input Hidden Hidden Output
layer 1 layer 2 layer
(X XwW, 1) loss = E_-log L(,y)

+ KL}prior, var. posterior)
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