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Semi-Structured Deep Distributional Regression (SDDR)

• Semi-Structured:
• Combine structured data & statistical regression components
• with unstructured components such as deep neural networks

• Distributional Regression:
• Modeling the whole distribution
• Similar to location, scale and shape (LSS) approaches

SDDR I

6/41 David Rügamer (LMU) Semi-Structured Deep Distributional Regression



• Main idea:
• Fit all commonly used statistical models in a neural network (1)
• but also allow to learn parts of the model “deep” (2a)
• Ensure a meaningful behaviour between the two parts (2b)

SDDR II

7/41 David Rügamer (LMU) Semi-Structured Deep Distributional Regression



1 Statistical Regression in Neural Networks

2 Neural Networks beyond Classical Regression

3 A Unified Framework

4 Extensions

5 Software

6 Some Results

7 Summary

Outline

8/41 David Rügamer (LMU) Semi-Structured Deep Distributional Regression



Statistical Regression in
Neural Networks



• A neuron h in a neural network (NN) is a transformed linear
combination

• For one observation (n = 1):

Input: x ∈ R1×p

Weights: w ∈ Rp

Input times weights: [ := xw =
∑

j xjwj ∈ R
Output: h = f([) ∈ R

with activation function f(·)

Neurons in Neural Networks
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A Linear Model
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• No limitation to p ≤ n
• No limitation for large n
• Any differentiable loss function (↔ distribution)
• Auto differentiation

But we can also learn whole distributions...

Advantages of GAMs in NN
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Idea [2]: Instead of using an output layer that just creates ŷ
• why not return a parametric distribution F (θ)
• with parameters θ learned by the neural network?

Distribution Layers
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• not restricted to standard distributions:

• arbitrary mixtures of distributions
• bijectors allowing for diffeomorphisms
• (autoregressive) flows [6]
• ...

• still auto differentiation

Distribution Layers Extended
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Neural Networks beyond
Classical Regression



NNs are very flexible in their model specification.

We can add:

• Higher-order Effects
• Additive models are easy to interpret and understand,
• but what if the data generating process is more complex

• Additional non-tabular data
• Extracting features from images, texts, ... is tedious
• Not an end-to-end approach

The benefit of NN + Stat.Regression
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Many use cases have additional non-tabular data

• Medicine: Patient info (tabular), but also with scans

Source: Ingrisch (2020)

Unstructured Data Sources I
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• Psychology: Questionnaires, with open-ended questions

Source: https://trinachi.github.io/

Unstructured Data Sources II
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Learn from multiple data modalities + tabular data

Source: Petfinder.my

Multimodal Learning
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AUnified Framework



1 All commonly used regression models within NN
• with the exact same model being optimized
• comparable results to classical statistical routines

2 Also allow for deep neural network (DNN)
• ensure that this does not conflict with first goal

Goal
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Free to add any other deep neural network to \k

\k = fk ([k) = f(Vk,0 + xβk + DNNk)

⇒ Framework = Structured Effects + Unstructured Effects
⇒ DNNk allows to
• include unstructured data sources, like images, texts, etc.
• model higher-order (non-linear) interaction effects

... but we have to enforce
• identifiability of structured effects
• meaningful decomposition

SDDR Framework
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1 SDDR without DNN / DNN with no influence
→ should yield the structured additive model

2 SDDR with no influence of structured model part
→ structured effects should be zero

3 Structured effect and DNN effect of same covariates
→ ensure identifiability

⇒ via Orthogonaliazation

Axiomatic Properties
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Separates space in its different components
• Linear space spanned by columns of structured covariates X
• Orthogonal complement X⊥
• DNN is projected into X⊥→ happens within the graph

⇒ Ensures identifiability

Orthogonalization
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Extensions



• Within SDDR
• Multivariate outcome models
• Inference for weights→ turn SDDR into a Bayesian NN

• Other proposed derivates
• Neural Mixture Density Regression (w/ Pfisterer & Bischl)
• Deep Conditional Transformation Models (w/ Baumann &

Hothorn)
• Deep Piecewise Exponential Models (w/ Kopper, Bender et al.)

• Upcoming
• SDDR for functional data
• SDDR for time series data
• Further Orthogonalization use cases

Extensions
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Software



• Implemented in R package deepregression
• Basis Transformations using s-/ti-/te-terms from mgcv
• DNN definition in keras
• Graph building and model training in Python / TensorFlow

Implementation

26/41 David Rügamer (LMU) Semi-Structured Deep Distributional Regression



Example:
Y = V0 + f1(x) + DNN1(x) + Y

with
Y ∼ N(0, f)

and we model

f = exp

(∑
k

I (fac = k)Vk + f2(z) + DNN2(a, b, c, d)
)
.

Example and Details I
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Exemplary DNN specifications:

deep_mod1 <- function(x) x %>%
layer_dense(units = 1, activation = "linear")

deep_mod2 <- function(x) x %>%
layer_dense(units = 32, use_bias = FALSE) %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 8, activation = "relu") %>%
layer_dense(units = 1, activation = "linear")

Example and Details II
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Example ctd.:

mod <- deepregression(
y = y,
data = data,
list_of_formulae = list(
location = 1 + s(x, bs = ’ps’) + deep_mod1(x),
scale = 0 + fac + s(z) + deep_mod2(a,b,c,d)),
list_of_deep_models = list(deep_mod1, deep_mod2),
family = "normal",
df = 10

)

history <- mod %>% fit(epochs=100)

Example and Details III
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Many convenience functions available for the fitted mod:
• coef for structured model coefficients
• plot for plotting smooth terms
• cv for tuning the model
• get_distribution to access fitted distribution
• predict for prediction on new data
• ...

Example and Details IV
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• Still in a private Github repo
• If you want to use the Beta version, let me know
• Hopefully open-sourced end of year

Release
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SomeResults



Decomposition
• Simulation to demonstrate identifiability of structured effects in
DNN presence

• Data generating process:

E(Y |x) = V0 + xβ +
10∑
j=1

fj (xj) +
10∏
j=1

xj

• Model:
location = +1 + x1 + ...+ x10 +

s(x1) + ...+ s(x10) +
deep(x1, ..., x10)

Simulation Results - Decomposition I
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Estimated additive effects f1, . . . , f6 (columns):

Simulation Results - Decomposition II
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Model Comparison LSS Approaches
• Simulation to demonstrate estimation performance and
goodness-of-fit
• Compared to bamlss, gamlss, mboostLSS
• Additive model with Normal, Gamma and Logistic distribution
• n ∈ {300, 2500}, p ∈ {10, 75}

Simulation Results - Comparisons I
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RMSE of coefficients (w/o outliers from bamlss and gamlss)
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Deep Conditional Transformation Models
• Movies Review Dataset

• Model the conditional CDF of movie revenue Y
non-parametrically
• Using transformation models:

P(Y ≤ y|x) = FZ (h(y|x))

with error distribution FZ

and transformation function

h(y|x) = a(y)> ϑ(x)︸︷︷︸
Interaction Term

+ V(x)︸︷︷︸
Shift Term

Application - Deep Transformation Model I
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• For tabular data, we define the predictor

20∑
r=1

Vr,tI (genrei = r) + s1,t (popularityi)+

s2,t (releasedatei) + s3,t (budgeti) + s4,t (runtimei)

for both Shift and Interaction

• We also use the movie description in a DNN:

Structured: no DNN
Deep Shift: embedding + FC layer in Shift term
Deep Interaction: embedding + FC layer in Interaction term
Deep Combination: embedding + FC layer fed in both terms

Application - Deep Transformation Model II
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t-SNE of learned embedding space for 50 most freq. words
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• Comparison with Transformation Boosting Machines (TBM, [3])
• Based on averaged predicted log-scores (PLS) on test data

Model mean PLS (SD)
Structured -4.84 (3.10)
Deep Shift -52.58 (21.06)
Deep Interaction -20.68 (11.80)
Deep Combination -24.64 (13.00)
TBM-Shift -23.31 (0.83)
TBM-Distribution -22.38 (0.31)

Application - Deep Transformation Model V
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Summary



• Statistical Regression can be embedded into NN
• feasibility in high-dimensional settings
• straightforward extensions of existing model classes

• SDDR
• unified network architecture
• to fit (distributional) regression models
• options to add arbitrary DNN
• ensures identifiability

• deepregression
• implementation of SDDR in R
• various models using familiar R interface

Summary
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Appendix



Movie Review Dataset
• Movie Reviews from 0 to 10
• Tabular information like revenue, release date, ...
• genres→ one movie can have multiple genres

Application - Mixture Models I
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Ratings for different genres

0.0

0.2

0.4

0.6

2.5 5.0 7.5 10.0
vote average

V
al

ue

genres

Action Adventure Animation Comedy Crime Documentary

Drama Family Fantasy History Horror Music

Mystery Romance Science Fiction Thriller War Western

Application - Mixture Models II
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• We define a mixture model of 18 beta distributions

• distribution parameters c0, c1 of all 18 mixtures are modeled via

s1,m,k (budgeti) + s2,m,k (popularityi)+
s3,m,k (runtimei) + s4,m,k (releasedatei)

for mixture m and parameter k ∈ {0, 1}
• Movie description→ embedding layer + FC layer

Application - Mixture Models III
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Models:
(I) : Only structured predictor
(II) DNN with 18 output units fed into c0’s
(III) DNN with 18 output units fed into c1’s
(IV) DNN with 36 output units fed into c0’s and c1’s
(V) DNN with 1 output unit fed into linear predictor of π
(VI) Combination of (IV) and (V)

Application - Mixture Models IV
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Mean RMSE values (standard deviation in brackets) on test data

Model Mean RMSE
(I) 0.242 (0.128)
(II) 0.176 (0.122)
(III) 0.213 (0.117)
(IV) 0.321 (0.156)
(V) 0.117 (0.026)
(VI) 0.190 (0.090)

Application - Mixture Models V
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Estimated mixture components for each model
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SDDR can also be turned into a Bayesian NN (BNN)

• A BNN defines (prior) distributions over weights w
• The corresponding posterior p(w|x) is usually intractable
• Variational inference: Define approximate posterior

• variational posterior q(w|ϑ)
• variational parameters ϑ

• network is trained by minimizing the ELBO criterion

KLq [q(w|ϑ) | | p(w|x)] − Eq [logL(w)]

using the Bayes by Backprop [1] algorithm

Extension: Epistemic uncertainty
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Bayesian / Variational Layers (ctd.)
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